Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(3)2023 03 20.
Article in English | MEDLINE | ID: mdl-36992499

ABSTRACT

Tick-borne encephalitis (TBE) is a viral disease endemic in Eurasia. The virus is mainly transmitted to humans via ticks and occasionally via the consumption of unpasteurized milk products. The European Centre for Disease Prevention and Control reported an increase in TBE incidence over the past years in Europe as well as the emergence of the disease in new areas. To better understand this phenomenon, we investigated the drivers of TBE emergence and increase in incidence in humans through an expert knowledge elicitation. We listed 59 possible drivers grouped in eight domains and elicited forty European experts to: (i) allocate a score per driver, (ii) weight this score within each domain, and (iii) weight the different domains and attribute an uncertainty level per domain. An overall weighted score per driver was calculated, and drivers with comparable scores were grouped into three terminal nodes using a regression tree analysis. The drivers with the highest scores were: (i) changes in human behavior/activities; (ii) changes in eating habits or consumer demand; (iii) changes in the landscape; (iv) influence of humidity on the survival and transmission of the pathogen; (v) difficulty to control reservoir(s) and/or vector(s); (vi) influence of temperature on virus survival and transmission; (vii) number of wildlife compartments/groups acting as reservoirs or amplifying hosts; (viii) increase of autochthonous wild mammals; and (ix) number of tick species vectors and their distribution. Our results support researchers in prioritizing studies targeting the most relevant drivers of emergence and increasing TBE incidence.


Subject(s)
Dermacentor , Encephalitis, Tick-Borne , Ixodes , Animals , Humans , Europe/epidemiology , Animals, Wild , Mammals
2.
Appl Environ Microbiol ; 76(10): 3293-300, 2010 May.
Article in English | MEDLINE | ID: mdl-20363798

ABSTRACT

Botulinum neurotoxin (BoNT) is the most toxic substance known to man and the causative agent of botulism. Due to its high toxicity and the availability of the producing organism Clostridium botulinum, BoNT is regarded as a potential biological warfare agent. Because of the mild pasteurization process, as well as rapid product distribution and consumption, the milk supply chain has long been considered a potential target of a bioterrorist attack. Since, to our knowledge, no empirical data on the inactivation of BoNT in milk during pasteurization are available at this time, we investigated the activities of BoNT type A (BoNT/A) and BoNT/B, as well as their respective complexes, during a laboratory-scale pasteurization process. When we monitored milk alkaline phosphatase activity, which is an industry-accepted parameter of successfully completed pasteurization, our method proved comparable to the industrial process. After heating raw milk spiked with a set amount of BoNT/A or BoNT/B or one of their respective complexes, the structural integrity of the toxin was determined by enzyme-linked immunosorbent assay (ELISA) and its functional activity by mouse bioassay. We demonstrated that standard pasteurization at 72 degrees C for 15 s inactivates at least 99.99% of BoNT/A and BoNT/B and at least 99.5% of their respective complexes. Our results suggest that if BoNTs or their complexes were deliberately released into the milk supply chain, standard pasteurization conditions would reduce their activity much more dramatically than originally anticipated and thus lower the threat level of the widely discussed "BoNT in milk" scenario.


Subject(s)
Botulinum Toxins/chemistry , Clostridium botulinum/physiology , Food Contamination/prevention & control , Hot Temperature , Milk/chemistry , Alkaline Phosphatase/metabolism , Animals , Botulinum Toxins/analysis , Botulinum Toxins/toxicity , Enzyme-Linked Immunosorbent Assay , Food Contamination/analysis , Male , Mice , Sensitivity and Specificity , Toxicity Tests, Acute
SELECTION OF CITATIONS
SEARCH DETAIL
...